
Cache	Coherence
Suvinay Subramnian
6.823	Spring	2016



Cache	Coherence	Problem

»Many	parallel	programs	communicate	through	
shared	memory
- Shared	memory	is	easier	for	programmers

» Problem:	If	multiple	processors	cache	the	same	
block,	how	do	they	ensure	“correct”	view	of	the	
data?



Cache	Coherence	Problem

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash

500

500

400

400

300

Two	processors,	no	caches:	No	problem



Cache	Coherence	Problem

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash

V:	500

500

500

D:	400 500

D:	400 V:	500 500

D:	400 D:	400 500

Two	processors,	write-back	caches:	Problem!



Cache	Coherence	Responsibility

» Software
- What	if	ISA	could	provide	FLUSH	instruction?

»Hardware
- Simplifies	software’s	job
- Common	in	today’s	systems



Cache	Coherence	Strategies

» Invalidation-based:
On	a	write,	all	other	caches	with	copies	are	
invalidated.
»Update-based:
On	a	write,	all	other	caches	with	copies	are		
updated.

Two	rules:
1. Write	propagation:	Writes	eventually	become	visible	

to	other	processors
2. Write	serialization:	Writes	to	same	location	are	

serialized



Cache	Coherence	Strategies

» Snoopy	coherence	protocol
All	caches	observe	other	caches’	actions	through	a	
shared	bus(-like)	interconnect.

»Directory-based	coherence	protocol
A	coherence	directory	tracks	contents	of	caches	
and	sends	(and	receives)	messages	to	maintain	
coherence.

What	are	the	tradeoffs?



Valid-Invalid	Snooping	Protocol

» Simple	rules
- Allows	multiple	readers,	must	write	through	to	bus
- Write-through,	no	write-allocate
- All	caches	monitor	(“snoop”)	bus	traffic

V

I

BusWrPrRd/	BusRd

PrRd /-- PrWr /BusWr

PrWr /BusWr



Supporting	Write-Back	Caches

Key	idea:	Add	notion	of	“ownership”
»Mutual	exclusion	– when	“owner”	has	only	replica	
of	a	cache	block,	it	may	update	it	freely	
» Sharing	– multiple	readers	ok,	but	they	may	not	
write	without	gaining	ownership



MSI	Protocol

» Three	states	per	cache-line
- Invalid	(I):	Cache	does	not	have	a	copy
- Shared	(S):	Cache	has	read-only	copy;	clean
- Modified	(M):	Cache	has	only	copy;	writable;	
(potentially)	dirty

» Processor	Actions:	Read	(PrRd),	Write	(PrWr)
» Bus	Actions:	BusRd,	BusRdEx,	BusWB



MSI	Protocol
PrRd /--

M

BusRdX 
/ BusWBPrWr / 

BusRdX
S

I

PrWr / --

BusRd / 
BusWBPrWr /

BusRdX

PrRd / 
BusRd BusRdX / --

PrRd / --
BusRd / --

Processor-initiated transitions
Bus-initiated transitions

Actions
Processor Read (PrRd)

Processor Write (PrWr)

Bus Read (BusRd)

Bus Read Exclusive 
(BusRdX)

Bus Writeback (BusWB)



MSI:	Optimizations

» Problem:	MSI	suffers	from	frequent	read-upgrade	
sequences
- Leads	to	two	bus	transactions	even	for	private	blocks.

» Solution:	Add	exclusive	(E)	state
- E:	Only	one	copy;	writable;	clean
- Cores	silently	transition	to	M	on	PrWr to	indicate	dirty



MSI	Optimizations

» Problem:	MESI	must	write-back	to	memory	on	
MàS	transitions
- Why?	Because	protocol	allows	silent	evicts	when	in	S	
state,	which	might	cause	dirty	data	to	be	lost.
- Write-backs	may	be	a	waste	of	bandwidth;	eg:	producer-
consumer	scenarios

» Solution:	Add	owned	(O)	state
- O:	shared,	but	dirty;	only	one	owner;	entered	on	MàS	
downgrade
- Owner	responsible	for	write-back	on	eviction



Directory	Coherence	Protocol

» In	addition	to	cache	states,	directory	maintains	its	
coherence	state,	and	sharer	set
- Essentially,	extending	memory	(or	next	cache	level)	to	
track	caching	information

» States:
- Uncached (Un):	No	cache	has	a	valid	copy
- Shared	(S):	One	or	more	caches	in	S	state
- Exclusive	(Ex):	One	of	the	caches	in	M	state

» Sharer	Set:
- Tracks	which	caches	hold	the	line



Snoopy,	Directory	Optimizations

» Snoopy:
- Split-transaction	buses

»Directory:
- Centralized	vs	distributed	directory
- Efficient	sharer	representation

• Bit-vectors;	limited-pointers;	bloom	filters	etc.



Cache	Coherence	Races

» Problem:	Transactions	are	not	atomic

» Transient	states,	protocol	events	to	handle	races

» Examples…



Murphi

» Formal	state	verification	of	finite	state	machines

» State-space	exploration:	explores	all	reachable	
states
»Uses	symmetry	to	canonicalize redundant	states



Murphi Language

» Rules:	Transitions	between	states
» Invariants	and	asserts:	Capture	protocol	
correctness
» Scalarsets,	multi-sets:	Capture	symmetry



Principles

» Think	of	sending	and	receiving	messages	as	
separate	events.
» At	each	step,	think	what	new	requests	can	occur
- Messages	overtaking	other	messages

» Two	messages	in	the	same	direction	implies	a	race
- Consider	both	deliver	orders
- Often,	only	one	node	knows	how	to	resolve	a	race	
(might	send	other	nodes	msgs suitably)


